Ensemble Classifier for Benign-Malignant Mass Classification

نویسنده

  • Muhammad Hussain
چکیده

Mammography is currently the most effective imaging modality for early detection of breast cancer. In a CAD system for masses based on mammography, a mammogram is segmented to detect the masses. The segmentation gives rise to mass regions of interested (ROIs), which are either benign or malignant. There is a need to classify the extracted mass ROIs into benign and malignant masses; it is a hard problem because the texture micro-structures of benign and malignant masses have close resemblance. In this paper, a method for classifying mass ROIs into benign and malignant masses is presented. The key idea of the proposal is to build an ensemble classifier that employs Gabor features, consults different experts (classifiers) and takes the final decision based on majority vote. The system is evaluated on 512 (256 benign+256 malignant) mass ROIs extracted from mammograms of DDSM database. The ensemble classifier improves the classification rate for the problem of the discrimination of benign and malignant masses to 90.64%. Comparison with stateof-the-art techniques suggests that the proposed system outperforms similar methods. Ensemble Classifier for BenignMalignant Mass Classification

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Optimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach

In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...

متن کامل

Classifier Ensemble Framework: a Diversity Based Approach

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...

متن کامل

A Hierarchical Classification Method for Breast Tumor Detection

Introduction Breast cancer is the second cause of mortality among women. Early detection of it can enhance the chance of survival. Screening systems such as mammography cannot perfectly differentiate between patients and healthy individuals. Computer-aided diagnosis can help physicians make a more accurate diagnosis. Materials and Methods Regarding the importance of separating normal and abnorm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJCVIP

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013